FACILE SYNTHESIS OF ALKYL $\beta-BENZYLOXYAMINOCARBOXYLATES$ RELATED TO MONOCYCLIC β -LACTAMS.

Kiyoshi Ikeda, Kazuo Achiwa, and Minoru Sekiya Shizuoka College of Pharmacy, 2-2-1 Oshika, Shizuoka 422, Japan

N-Benzyloxyimines have been shown to react with ketene silyl acetals in the presence of trimethylsilyl triflate catalyst to give alkyl β -benzyloxyaminocarboxylates. Conversion of them to β -lactams has been exemplified.

Synthesis of N-unsubstituted and N-hydroxylated β -lactams is an important subject in connection with the recently interesting monobactams such as sulfazecin¹ and azthreonam,² and monosulfactams^{3f} as biologically active monocyclic β -lactams. A number of works^{3a-g} have been reported for this purpose. One of the methods is, as previously reported,^{3g} to synthesize N-benzyloxy- β -lactams which are convertible to N-hydroxylated β -lactams by catalytic hydrogenation and then to N-unsubstituted ones by treatment with titanium trichloride. In contrast to the previous papers^{3a-g} on the synthesis of N-benzyloxy- β -lactams through N-C₄ bond closure, the present paper has exploited a new route through N-C₂ bond closure, which involves synthesis of key precursors, alkyl β -benzyloxyaminocarboxylates. A series of this type of the compound, previously unknown, have been synthesized by a reaction of N-benzyloxyimines with ketene silyl acetals catalyzed by trimethylsilyl triflate. A similar condensation between ketene silyl acetals and Schiff bases has been reported to proceed in the presence of an equimolar amount of titanium tetrachloride.⁴

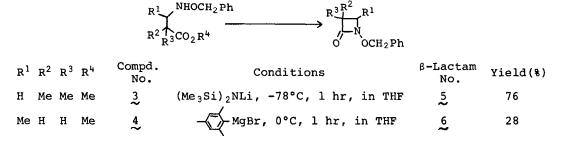
4707

The conditions and the results of this reaction of formaldoxime-(1) and acetaldoxime-O-benzyl ether (2) with a number of ketene silyl acetals are summarized in Table 1. All the reaction of 1 proceeded smoothly in dichloromethane at room temperature in the presence of 0.1 molar equivalent of trimethylsilyl triflate. The reaction of 2 did not proceed under the same conditions other than the use of acetonitrile instead of dichloromethane.

A typical experiment (entry 1 in Table 1) is as follows. To a solution of 1 (5 mmol) and dimethylketene methyl trimethylsilyl acetal (5 mmol) in 10 ml of dichloromethane trimethylsilyl triflate (0.5 mmol) was added dropwise on cool. The mixture was stirred at room temperature for 5 hr. The reaction solution was washed with 10% potassium bicarbonate solution and dried over anhydrous magnesium sulfate. After removal of dichloromethane the resulting residue was distilled under reduced pressure to give methyl 3-(N-benzyloxyamino)-2,2-dimethylpropionate in 89% yield. A liquid: bp 118°C(0.50 mmHg); IR (film) 1740(ester C=O) and 3298 cm⁻¹(NH); ¹H-NMR (CDCl₃) δ =1.20[6H, s, C(CH₃)₂], 3.05(2H, s, CH₂N), 3.58(3H, s, OCH₃), 4.62(2H, s, CH₂Ph), and 7.31 (5H, s, C₆H₅); ¹³C-NMR (CDCl₃) δ =23.9(q), 42.2(s), 51.7(q), 60.4(t), 75.9(t), 127.7(d), 128.2(d), 128.5(d), 137.9(s), and 177.4(s).

Mechanistically in this reaction the catalytic cycle can be postulated to be initiated by the formation of an intermediary silylated N-benzyloxyiminium salt [RCH= $\stackrel{\Phi}{N}$ $\stackrel{OBz}{\leq} \stackrel{\Theta}{SiMe_3}$ OTf] from N-benzyloxyimine and trimethylsilyl triflate as recently proposed for the reaction of hexahydro-1,3,5-triazines with ketene silyl acetals.⁵

Ring closure of β -benzyloxyaminocarboxylates to β -lactams was realized by the use of 3 and 4 (entry 1 and 9) as representatives. The reaction of 3 proceeded smoothly in the presence of an equimolar amount of lithium bis(trimethylsilyl)amide in tetrahydrofuran, but 4 did not proceed under the same conditions, presumably owing to its structure possessing α -hydrogen. Conversion of 4 to the corresponding β -lactam (6) could be performed by the use of mesityl magnesium bromide as a base.


4709

Entry	N-Benzyloxy- imine	Ketene silyl acetal	Solvent, Conditions	s Product ^C	Compd. No.	Yield(%) ^d
1	CH2=NOCH2Ph ^a	>=< OSiMe₃ OMe	CH_2Cl_2 , rt, 5 h	$\mathcal{H}_{\mathrm{NHOCH}_2\mathrm{Ph}}^{\mathrm{CO}_2\mathrm{Me}}$	3 ~	89
2	CH2=NOCH2Ph ^a	OSiMe 3	CH_2Cl_2 , rt, 3.5 h	CO ₂ Me NHOCH ₂ Ph		76
3	CH ₂ =NOCH ₂ Ph ^a	$= \begin{pmatrix} OSiMe_3 \\ OCH_2 Ph \end{pmatrix}$	CH ₂ Cl ₂ , rt, 3 h	$\binom{\text{CO}_2\text{CH}_2\text{Ph}}{\text{NHOCH}_2\text{Ph}}$		42
4	CH ₂ =NOCH ₂ Ph ^a	OSIMe 3	CH_2Cl_2 , rt, 6 h	CO2Me NHOCH2Ph		95
5	CH ₂ =NOCH ₂ Ph ^a	PhOSiMe 3	CH_2Cl_2 , rt, 7 h	Ph_CO ₂ Me NHOCH ₂ Ph		93
б	CH ₂ =NOCH ₂ Ph ^a	PhO >= (OSiMe 3 OMe	CH_2Cl_2 , rt, 6 h	PhO CO2Me NHOCH2Ph		88
7	$CH_2 = NOCH_2 Ph^{a}$	(allyl) ₂ NOS:	$Me_{3}CH_{2}Cl_{2}$, rt, 5 h e	(allyl) ₂ N CO ₂ Me NHOCH ₂	Ph	52
8	CH ₃ CH=NOCH ₂ Ph ⁺	OSiMe ₃	CH ₃ CN, 30°C, 18 h	TCO2Me NHOCH2Ph		52
9	CH ₃ CH=NOCH ₂ Ph ^b	OSiMe 3 OCH2Ph	CH ₃ CN, 30°C, 20 h	CO2CH2Ph NHOCH2Ph	4~~	61

PRODUCTION OF ALKYL 8-BENZYLOXYAMINOCARBOXYLATES

Table l.

a) N-Benzyloxyimine : Ketene silyl acetal = 1 : 1 (molar proportion), Me₃SiOTf: 10 mol%. b) N-Benzyloxyimine : Ketene silyl acetal = 1.5 : 1, Me₃SiOTf: 10 mol% to N-Benzyloxyimine. c) All products gave satisfactory elemental analyses and their spectral data were consistent with the proposal structures. d) Based on the product isolated.

The β -lactam (6) obtained is regarded as a precursor of azthreonam, since 6 can be convertible to N-sulfo-2-azetidinone stepwise by azidation at the C₃ carbon with tosyl azide, hydrogenation to amine with simultaneous debenzylation, removal of N-hydroxy group by titanium trichloride reduction, and N-sulfonation with pyridine-sulfur trioxide complex (Pyr·SO₃), according to the previous papers.^{3e,3g,6} Therefore, a new synthetic route to azthreonam has been established.

References

- M. Asai, K. Haibara, M. Muroi, K. Kintaka, and T. Kishi, J. Antibiot., 34, 621(1981).
- R. B. Sykes, D. P. Bonner, K. Bush, and N. H. Georgopapadakou, Antimicrob. Agents Chemother., <u>21</u>, 85(1982).
- 3. a) P. G. Mattingly, J. F. Kerwin, Jr., and M. J. Miller, J. Am. Chem. Soc., <u>101</u>, 3983(1979); b) M. J. Miller, P. G. Mattingly, M. A. Morrison, and J. F. Kerwin, Jr., J. Am. Chem. Soc., <u>102</u>, 7026(1980); c) P. G. Mattingly, and M. J. Miller, J. Org. Chem., <u>46</u>, 1557(1981); d) M. J. Miller, J. S. Bajawa, P. G. Mattingly, and K. Peterson, J. Org. Chem., <u>47</u>, 4928(1982); e) D. M. Floyd, A. W. Fritz, J. Pluscec, E. R. Weaver, and C. M. Cimarusti, J. Org. Chem., <u>47</u>, 5160(1982); f) E. M. Gordon, M. A. Ondetti, J. Pluscec, C. M. Cimarusti, D. P. Bonner, and R. B. Sykes, J. Am. Chem. Soc., <u>104</u>, 6053(1982); g) P. G. Mattingly, and M. J. Miller, J. Org. Chem., <u>45</u>, 410(1980).
- 4. I. Ojima, S. Inaba, and K. Yoshida, Tetrahedron Lett., 3643(1977).
- 5. K. Ikeda, K. Achiwa, and M. Sekiya, Tetrahedron Lett., 913(1983).
- 6. H. H. Wasserman, and D. J. Hlasta, J. Am. Chem. Soc., <u>100</u>, 6780(1978).

(Received in Japan 4 July 1983)